
Cluster Computing 2 (1999) 219–227 219

Distributed volume morphing

Leewen Lin a, Chungnan Lee a and Tong-Yee Lee b

a Institute of Computer and Information Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
b Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan

3D morphing is a popular technique for creating a smooth transition between two objects. In this paper we integrate volume
morphing and rendering in a distributed network environment to speed up the computation efficiency. We describe our proposed system
architecture of distributed volume morphing and the proposed algorithms, along with their implementation and performance on the
networked workstations. A load evaluation function is proposed to partition the workload and the workstation cluster for better load
balancing and then to improve the performance under highly uneven load situation. The performance evaluation for five load balancing
strategies are conducted. Among them, the strategy ‘Request’ performs the best in terms of speedup.

1. Introduction

Volume morphing is a technique for generating smooth
3D image transformation between two objects. A source
model is mapped to a target model by incrementally com-
puting a function that converges the shape (and color) of
the source to the target. It has been used in entertainment
industry for a long time and can also be used as a tool
for illustration and teaching purposes. Methods have been
developed to deform various types of objects such as 2D
polygons [9], 3D polyhedral models [4], 2D rasters [1,10],
and 3D rasters [3,6].

Volume rendering, which often follows the morphed
volume construction, is a method for producing an im-
age from a 3D array of sampled scalar data. How-
ever, it is a computationally intensive application. Hence,
many researchers use parallel computers to speed up the
computation and make interactive feasible. Though vol-
ume morphing and rendering can be performed indepen-
dently among different processors, their computation time
and inter-communication are irregular and unpredictable.
Hence, it is necessary to come up with some strategies to
achieve fast volume morphing and rendering in the distrib-
uted environment.

In this paper, we focus on distributed volume morphing
with rendering process. Because of the large amount of
volume data and the high computational cost, we introduce
a master–slave structure to parallelize volume morphing.
We propose five strategies to distribute the load to achieve
fast computation. A load evaluation function is used to
predict the execution time of warping a volume for each
frame. Based on prediction, the master can dynamically
divide slaves into two groups for each frame in advance.
Also, we use the prediction function to make volume par-
tition for the adaptive load balancing.

The remainder of the paper is organized as follows. Sec-
tion 2 begins with a brief survey of previous volume morph-
ing algorithms, volume rendering and parallel techniques.
In section 3 we propose a load evaluation function and de-

scribe five distributed volume morphing strategies and then
evaluate their performance. Section 4 describes the details
and pseudo code for implementation. Section 5 gives the
results of performance evaluation of five strategies. Finally,
we conclude the paper with suggestions for future work in
section 6.

2. Prior work

Feature-based volume morphing [6] creates every mor-
phing in two steps, warping and blending as illustrated in
figure 1. The first step in the volume morphing pipeline is
to warp the source and target volumes S and T into vol-
umes S′ and T ′. The animator identifies two corresponding
features in S and T , by defining a pair of elements (es, et).
These features should be transformed from one to the other
during the morph. In feature-based morphing, elements
come in pairs, one element in the source volume S, and its
counterpart in the target volume T .

Two general types of task partitions for parallel volume
rendering algorithms are object partitions and image par-
titions. In object partition each processor is assigned a
specific subset of the volume data to resample and com-
posite [7,8]. The partial images from each processor must
then be composed together to form the image. In contrast,
in image partition each processor is only responsible for a
portion of the image [8].

Different from previous work in parallel rendering, there
are two novelties in our research. First, we parallelize vol-
ume morphing that is not reported in the literature so far.
Furthermore, volume morphing, which is a pipeline work
of warping, blending, and rendering, is much more com-
plicated than volume rendering. We must synchronize all
phases of pipeline to achieve a better speedup. In this study
the object partition is used to assign tasks rather than im-
age space, because it needs more communication for the
warped volume transmission at the blending phase among
slaves than that of parallel volume rendering.

 Baltzer Science Publishers BV



220 L. Lin et al. / Distributed volume morphing

Figure 1. The data flow of a morphing system.

Figure 2. The master-slave model.

3. Parallel algorithms for volume morphing

In this section, we describe the parallel computation of
feature-based volume morphing. The computation is per-
formed on a clustered-network environment by running the
PVM system [2]. To achieve a better load balancing, we
propose a load evaluation function to evaluate workload
before assigning slaves into two groups: source and tar-
get groups, dynamically. This function is also used to do
volume partition for load balancing of tasks.

3.1. The master-slave model

The overall structure of the distributed volume mor-
phing system is a master-slave architecture as illustrated
in figure 2. There are one master node and several slave
nodes.

The job assignments for the slaves are completely de-
pendent on the master. The master divides all the slave
nodes into two clusters for each frame. One cluster is re-
sponsible for the source volume warping and the other is
responsible for the target volume warping. For example,
the source cluster warps the source volume into intermedi-
ate volume and the target cluster does the target one for the
first frame. For the next frame the role for the slaves in two
clusters may be swapped to achieve a better load balancing.
At the beginning of each frame, the master must pass the
features and the volume data to every slave, and send the

Figure 3. State transition diagram for the slave nodes.

information of one cluster, like task id and partition table,
to the other cluster. When the slave nodes receive these
messages, they can begin to warp, blend, classify, and ren-
der. Meanwhile, the master waits for the rendered images,
prepares the next frame information, and sends more data
requested by the slaves. The final images are saved to the
file system by the master node.

To reduce the amount of work in the next stage, the
slaves in a small cluster will send its warped volume to the
slaves in the other cluster for blending when they finished
their warping job. For example, suppose that the source
cluster consists of 3 slaves and the target cluster consists
of 4 slaves, then the source cluster must send the warped
volume to the target cluster. In this way, we can reduce the
volume size for classification as small as possible. When a
target slave receives the warped source volume needed for
blending from the source slaves, it continues to do blending,
classification, and rendering. After it finishes the rendering
work, it sends the result of partial rendering image back to
the master node and requests more information for the next
frame.

The state transition diagram for all stages of volume
morphing on the slave nodes is illustrated in figure 3. The
items marked with the arrows show the flow of the data
needed for the next state. The execution sequence on these
arrows is also numbered. There are 7 states for slaves. Not



L. Lin et al. / Distributed volume morphing 221

every slave must walk through all the states for each frame.
If the slaves are in the small cluster, they do not have to do
blending, classification, and rendering. Those slaves who
send the warped volume to the corresponding slaves can
request the master node to send a new job. So they can
continuously work on the new frame without waiting for
the other cluster.

The states for the slave node are described as follows:

• Receive: At the beginning of each frame each slave must
receive the morphing information, such as feature sets,
task size, volume-partition table, etc., from the master.
When the slave receives those data, it switches to the
“warp” state.

• Warp: A slave warps the block volume dispatched by the
master in this phase. If the slave is in the large group, it
will receive all the corresponding warped volume from
the other group. When it has finished the warping job,
it then starts its blending state. Otherwise, it will send
its own warped volume to those slaves responsible for
blending.
A slave may send requests to the master to ask for more
raw data other than it owns in local memory, then it
goes back to warp the unfinished data. Hence, the local
machine has more flexibility in using its local memory.
After it finishes another block, it tries to listen whether
the requested data have arrived. If they have arrived, it
comes back to the “receive” state to receive them and
transits to fill the empty voxels.

• Send: A slave will change to the “send” state when
it needs to send messages or data to the master or the
slaves under the following events:

1. To request more raw volume from the master.

2. To send warped volume to other slaves.

3. To send rendered partial image to the master or to
request a new task.

• Voxel filling: When the slave receives the raw volume
sent by the master, it begins to compensate the empty
warped voxels. As soon as it finishes, it goes back to
warp next block.

Figure 4. Sending the warped volume from the source to the target groups
for blending, or vice versa.

• Blend: Only the slaves in the large group have to do the
blending job. A slave begins to blend two partial warped
volumes, when it receives all the other warped volumes
at the same slice position as illustrated in figure 4. In
figure 4, there are 3 tasks in the source group and 5 tasks
in the target group. A slave in the source cluster may
need to send its own warped volume, such as s task 0 in
the source, to more than one slave in the target cluster,
such as t task 0 and t task 1 in the target. Similarly,
a slave in the target, such as t task 3, needs to receive
the warped volume from more than one slave such as
s task 1 and s task 2 in the source before it can proceed
with blending. We use a linear weighted function w(t)
to interpolate their voxel values. Again, those volumes
may come from different slaves. At the next step, it
renders the partial image.

• Classify: Classifying the blended volume follows the
blending state. In this phase, a slave traverses the
blended volume in a storage order, computes the opacity
of each voxel, and then compares each voxel’s opacity
to determine if it is transparent or non-transparent. In
this way, the slave constructs the run-length encoded
volume for rendering.

• Render: At the last stage, the slave renders the partial
image depending on the classified volume. It computes
the shear and warp factors of the viewing transformation
matrix, and composites each slice of the volume into the
intermediate image in a front-to-back order. Finally, the
slave warps and sends the partial image to the master.

3.2. Load balancing schemes

The sequential morphing algorithm contains three phases:
warping and blending the source and target volumes, clas-
sifying the blended volume, and rendering the image, each
of which can be parallelized. However, from table 1, we
can find that the warping phase is a dominant factor for the
computation. So we focus on parallelizing the warping of
the two volumes.

We attempt to parallelize the morphing algorithm using
an object partition in which each slave is assigned a portion
of voxels partitioned in the y-direction as shown in figure 5.

When a volume is subdivided into sub-volumes, each
sub-volume must be overlaid at least 2 slices with its neigh-
boring sub-volumes to avoid ray samples error. The partial
images produced by slaves are sent to the master node and

Table 1
The execution time for each phase of sequential morphing algorithm (unit

in second) (volume size: 128× 128× 84, image size: 256× 256).

Task \ Frame 1 2 3 4 5

Warp brain 5.131 16.670 41.150 73.692 102.048
Warp sphere 136.044 81.578 39.526 15.194 6.238
Blend 0.785 0.697 0.689 0.790 0.696
Classify 15.248 4.087 13.689 12.247 8.845
Render 1.348 1.037 1.141 1.035 0.563
Total 158.555 114.067 96.194 102.957 118.389



222 L. Lin et al. / Distributed volume morphing

Figure 5. Volume partition in the y-direction.

Figure 6. Illustration of strategy 1.

placed in the correct position by the master. Currently, the
viewing direction is not considered.

We discuss four strategies: even-group and even-parti-
tion, adaptive-group and even-partition, adaptive-group and
adaptive-partition, and hybrid, in the next four subsections
and the strategy “Request” in section 4.

3.2.1. Strategy 1: Even-group & even-partition
This is the simplest method among the four strategies. In

this strategy, the master divides the slaves into two groups
with the same number of slaves. Then it dispatches the
same size of volume for each slave to warp as shown in
figure 6.

3.2.2. Strategy 2: Adaptive-group & even-partition
The strategy 1 does not consider the difference of the

warping time for different frames. As listed in table 2,
it shows the warping time for the source and the target
volumes for five consecutive frames. As one can see, the
warping time is different from frame to frame. At the first
frame, the ratio of the warping time between the brainsmall
dataset and the sphere dataset can be as small as 0.0378,
but at the fifth frame the ratio of warping time between
two datasets is as large as 16.3465. So, the strategy 2 is
to group the slaves based on the load of the source and
the target volumes (see figure 7). Then, these slaves in the
same group will obtain the task with the same volume size
for warping.

We use the variation sum of each feature pair to predict
the loads of the two volumes. This function is described as
follows.

Load evaluation function. At each frame, the time for
warping the source and the target volumes may not be

Table 2
The warping time for warping volumes for 5 frames (volume size: 128 ·

128 · 84, 38 sets of features).

Data \ Frame 1 2 3 4 5

Brainsmall 5.145 17.532 41.181 74.136 102.051
Sphere 136.001 82.855 39.530 15.678 6.243

Ratio 0.0378 0.2116 1.0418 4.7287 16.3465

Figure 7. Illustration of strategy 2.

Table 3
The ratio predicted by the load evaluation function.

Data \ Frame 1 2 3 4 5

Brainsmall 70.110 197.374 382.707 625.191 926.192
Sphere 926.844 626.206 384.052 199.245 70.281

Ratio 0.0756 0.3152 0.9965 3.1378 13.1784

the same due to different computational complexity for the
source and the target volumes. If we evenly divide slaves
into two groups, there must be a considerable waiting time
for the slowest slave to finish its job.

Under the circumstances, the load imbalance will de-
grade the performance of the algorithm. Hence we propose
a load evaluation function for each line feature pair to pre-
dict the load of warping a volume as follows:

load(e1, e2) = c1c2|s1 − s2|, (1)

where c1c2 is the translating distance of a set of features,
s1 and s2 are the lengths of the source and target features,
respectively. |s1−s2| represents the variance of the feature
pair. If a pair of line segments keep consistent, voxels near
the segments may stay at their original position so that they
need more interpolation instead of inverse mapping by all
features. Based on the load evaluation function, we add
the loads of all pairs for both the brainsmall and the sphere
datasets at each frame and use the ratio of two datasets
to divide slaves into two groups. The calculated data are
listed in table 3. Now as one can see, the ratio predicted
by the load function is similar to that of table 2.

The master uses the following equation to determine the
number of slaves in these two clusters for each frame:

Source slaves#

= total slaves#

×
[
source load/(source load + total load)

]
, (2)



L. Lin et al. / Distributed volume morphing 223

Table 4
The number of slaves in two clusters for each frame. Ten
slaves are divided into two groups using the load evaluation

function.

Data \ Frame 1 2 3 4 5

Brainsmall 1 2 5 7 9
Sphere 9 7 4 2 1

Figure 8. The relationship between the percentage of execution time and
the load predicted using equation (4) for three examples with features: 19,

24, and 38 sets of features, respectively.

where the source load is the load of source calculated by
equation (1) and the total load is the sum of the source
load and the target load. Suppose there are 10 slaves, the
number of slaves for each cluster assigned by the master
for each frame is illustrated in table 4. Then the master can
do dynamic partition of each volume for slaves using the
proposed load evaluation function.

Because we interpolate the source and target features at
each frame, so the intermediate feature is given by

e′ =
f

tot frame + 1
es +

tot frame + 1− f
tot frame + 1

et, (3)

where f is the index number of the current frame, and
tot frame is the number of total frames that the user wants
to produce.

Assume that all features are line segments; the percent-
age for the source volume contribution to the total load at
frame f can be written as

Source Load(f ) =
f 2

f 2 + (tot frame + 1− f )2
· 100%. (4)

Figure 8 shows the relation between the percentage of ex-
ecution time and the load predicted using equation (4) for
three examples which use 19, 24, and 38 sets of features,
respectively, over 10 frames. The trends of four curves
are almost the same. We can see that in the middle frame
the percentages of four curves are almost the same. At

Figure 9. Illustration of strategy 3.

Figure 10. Illustration of strategy 4.

the beginning and ending frames, the percentages for these
three examples are just a little more or less than that of the
predicted value.

3.2.3. Strategy 3: Adaptive-group and adaptive-partition
Different from strategy 2, this strategy adopts an adap-

tive volume partition because the distribution of features is
not even, and the warp-load of each sub-volume may not
be equal. We use the load evaluation function described
in section 3.2.2 to predict the load of each slice in the
y-direction. First, we compute the load of each feature el-
ement and find which slices the element crosses. Next, the
average load of each element is added to the correspon-
dent slices’ loads and a decreasing load, which is defined
as Load/(slices · d2), is added to the slices neighboring to
those the element crosses. Finally, the master decides the
partition based on the average of the load. Figure 9 illus-
trates this strategy. Each slave is assigned a task of different
size.

3.2.4. Strategy 4: Hybrid
In the three strategies mentioned above, each slave warps

only data in either the source volume or the target vol-
ume. But at some frames, the variation in one volume is
so small such that the slave’s load is still too light. Un-
der the circumstances, the master will assign the slave
more task from the other volume. The loads of two vol-
umes are added to be a total load. The adaptive partition
is still used and volumes are equally partitioned by the
average of the total load. If the slave has two tasks at
one frame, it requests the other when it finishes the first



224 L. Lin et al. / Distributed volume morphing

one. Figure 10 shows that the slave 0 is responsible for
the whole source volume and a small portion of the target
volume.

4. Implementation

To further decrease the waiting time at the end of each
frame, the slave can make request for the next task as soon
as it finishes the current one. The master will compute
the intermediate features, group slaves, and make volume
partition after it finishes sending all information about the
current frame. Then it waits for the slaves’ responses and
sends the information of the next frame to the slaves. The
slaves can warp each frame at different time to save un-
necessary waiting time. However, for the synchronization
reason, the master sends the synchronization signal to in-
form slaves to make sure that all slaves work at the same
frame. Thus, the slave who warps first will not send the
warped volume to the wrong frame. Incorporating the strat-
egy 4 with the mechanism described above it becomes the
strategy ‘Request’.

In the distributed computing environment, the commu-
nication cost can be a dominant factor in the morphing
process. So we send the source and the target raw volumes
to all the slaves at the beginning, each slave holds these
data till all tasks are done.

In volume rendering, we adopt Locroute’s Volpack li-
brary of fast volume rendering that uses a shear-warp fac-
torization of the viewing transformation [5]. It combines the
advantages of ray casting and splatting algorithms. Locroute
chooses the shear transformation such that the viewing rays
become perpendicular to the slices of the volume. The shear
is implemented by translating and resampling each slice of
volume data. The re-sampling slices are combined together
in the front-to-back order using the “over” operator to form
an intermediate image. Finally the intermediate image must
be transformed into the correct final image by applying an
affine 2D warp. The warp is relatively inexpensive, be-
cause it operates on 2D images rather than the 3D volume
data.

Figure 11 is a pseudo-code description of the algorithm
for the master node. It first sends the raw data of source
and target volumes to all slaves and dispatches tasks by the
load evaluation function. Then the outer loop iterates over
the frames. The master synchronizes slaves after it sends
the intermediate features to all slaves. While it waits for
messages, it prepares the intermediate features and parti-
tions for the next frame. The inner loop iterates for the
number of tasks. Based on the received message, the mas-
ter determines whether to send the task of the current or
the next frame back. After all tasks send messages back,
this frame is completed.

The pseudo-code in figure 12 shows the flow control for
each slave in the distributed morphing algorithm. First,
every slave receives the raw volumes from the master.
Every slave loops through the total frames. For each dis-
patched task, the slave receives the features and partition

Figure 11. Pseudo-code for the master node.

Figure 12. Pseudo-code for the slave node.

table of volumes, and warps a portion of the volume. Af-
ter it receives the synchronization signal from the master,
it can transfer or receive the warped volume. If the slave
belongs to the large group, it must receive the same size
of volume together with its own volume in order to blend,
classify, and render the partial volume. Then it sends the
image back to the master. Otherwise, the slave sends its
own warped volume to the slaves in the other cluster and
requests the next job.

5. Performance evaluation

We implement the algorithm of distributed volume mor-
phing using the C language and the PVM (Parallel Vir-



L. Lin et al. / Distributed volume morphing 225

Figure 13. The animation sequence of the sphere to the brainsmall.

Table 5
The parallel efficiency for all strategies (%).

Strategy \ Slaves 2 3 4 5 6 7 8 9 10

I 57.80 – 47.30 – 34.40 – 34.11 – 30.42
II 57.80 62.80 54.43 52.84 48.93 48.91 47.39 42.89 43.28
III 58.60 61.97 61.20 57.04 52.03 45.54 43.14 38.68 39.07
IV 65.80 69.20 73.35 61.52 68.22 60.36 59.29 57.56 56.02

Request 66.37 84.82 77.58 81.89 70.26 73.49 67.07 69.23 62.56

tual Machine) platform [2] on a network computing envi-
ronment with SUN SPARC5 workstations. To run a pro-
gram under PVM, the user first executes a daemon process
on the local host machine, which in turn initiates dae-
mon processes on all other remote machines, then calls the
user’s application program that should reside on each ma-
chine. Communication and synchronization among user’s
processes are controlled by the daemon processes. Un-
like a shared-memory multiprocessor, the communication
overhead of the PVM network platform must be handled
carefully.

The two datasets we used in these experiments are a
brainsmall and a sphere volume data. The sizes of them are
128×128×84 (x×y×z). We define 38 sets of features for
each volume to produce the morphing sequences. Among
38 sets of features, there are 14 points and 24 segments.
Figure 13 shows only the first, the middle and the last
animation results of this example.

5.1. Speedup

Figure 14 shows the speedup for four strategies and the
strategy ‘Request’. Among the five strategies, the strat-
egy ‘Request’ achieves the best speedup of 6.255 when 10
slaves are used.

Table 5 shows the parallel efficiency for each strategy
using different slaves. The parallel efficiency is defined as
follows:

parallel efficiency =
Speedup

Speeduplinear
. (5)

The parallel efficiency of the strategy ‘Request’ com-
pared with that of other strategies using 5 slaves achieves the
best result. The parallel efficiency improves from 52.84%
using the strategy II to 81.89% using the strategy ‘Request’.

Figure 14. The average speedup of 5 frames.

5.2. Efficiency

We use a load balance equation to evaluate the warping
time. The computation efficiency is the ratio of the average
computer load to the maximum computer load,

eff =
Lavg

Lmax
, (6)

where Lavg is the average warping time of all slaves, and
Lmax is the maximum warping time of all slaves at each
frame. The efficiency results using 5 and 10 slaves are
listed in tables 6 and 7. Of all four strategies, the strat-
egy IV achieves the highest efficiency. It shows our volume
partition method is better than even partition. Strategy III
has good efficiency at frames 2, 3, and 4, but worse effi-
ciency at frames 1 and 5, due to only one slave responsible



226 L. Lin et al. / Distributed volume morphing

for the source or target volume and very light load at frames
1 and 5.

Furthermore, the warping efficiencies in tables 6 and 7
are better than the speedup drawn in figure 14. It may result
from two reasons:

1. We only take the load of warping time into consider-
ation. However, the partition size will influence the
classification time too. A larger partition will take the
longer classification time. When the number of slaves
increases, the classification time becomes more domi-
nant.

2. The slaves must wait for the warped volumes from the
other slaves for blending. As a result, it can affect the
total time.

Table 6
The efficiency of four strategies using 5 slaves.

Frame \ Strategy I II III IV

1 – 0.6353 0.5389 0.8938
2 – 0.6193 0.9116 0.8644
3 – 0.6303 0.7388 0.7114
4 – 0.6103 0.7591 0.7655
5 – 0.6007 0.6096 0.8136

Table 7
The efficiency of four strategies using 10 slaves.

Frame \ Strategy I II III IV

1 0.4045 0.6853 0.4086 0.6903
2 0.3372 0.5634 0.7657 0.7950
3 0.4780 0.4813 0.7368 0.7394
4 0.3577 0.5585 0.7591 0.7732
5 0.3422 0.6148 0.5468 0.8290

5.3. Waiting time

We compare the waiting time between the strategy IV
and the strategy ‘Request’ in table 8. The average waiting
time of each slave for each frame is about 2.32 seconds
using the strategy ‘Request’. It is less than 10.65 seconds
of the strategy IV. The waiting time (2.32 sec) constitutes
12.3% of the average time (18.87 sec) of one frame.

5.4. Time analysis

Combining the contributions of all phases, we find the
total execution time for the algorithm:

t = twarp + tblend + tclassify + trender + tcomm + twait, (7)

where:

twarp = the execution time used in warping,

tblend = the execution time used in blending the two
warped volume,

tclassify = the execution time used in classifying the blended
volume,

trender = the execution time used in rendering the partial
image,

tcomm = the execution time taken for inter-processor com-
munication, including transmission and recep-
tion of partial volumes and partition data,

twait = the execution time taken for waiting.

Tables 9 and 10 show the analysis of the total execution
time of 10 and 5 slaves into its components.

From table 9, we observe that the communication time
contributes only 1.62% of the total parallel morphing op-
eration. Compared with the warping time of the volumes

Table 8
The total waiting time of each slave for 5 frames using the strategy IV and the strategy ‘Request’. The average waiting time of each slave at

each frame is shown in the last column.

Strategy \ Slave 1 2 3 4 5 6 7 8 9 10 Average

Request 1.67998 3.37936 11.8729 19.455 11.7725 13.3789 10.0945 15.2861 19.3578 9.87515 2.323044
IV 19.3096 38.8548 46.909 64.4183 55.6067 67.7257 54.6047 62.0297 74.9085 47.9381 10.6461

Table 9
The analysis of time taken for various tasks using 10 slaves.

t twarp tblend tclassify trender tcomm twait

Time (sec) 870.6707 617.8421 2.472054 85.14585 14.12165 14.11944 136.9696
Per (%) 100 70.96163 0.283925 9.779341 1.621928 1.621674 15.7315

Table 10
The analysis of time taken for various tasks using 5 slaves.

t twarp tblend tclassify trender tcomm twait

Time (sec) 733.3984 571.188 2.284154 63.05227 6.847984 6.376199 83.64975
Per (%) 100 77.88237 0.311448 8.597275 0.933733 0.869405 11.40577



L. Lin et al. / Distributed volume morphing 227

by all slaves which takes up 70.96% of the total time, the
communication is not the main factor to improve time effi-
ciency in our distributed morphing algorithm. However, a
better partition scheme may help to reduce the total waiting
time which amounts to 15.73%. Moreover, the classifica-
tion time should be also taken into consideration in order
to reduce the waiting time.

6. Conclusions

In this paper, we have presented a parallel volume mor-
phing algorithm for a networked cluster of workstations.
The algorithm divides the computation load of warping
across all processors by the load evaluation function. Based
on the proposed function we could predict the ratio of the
warping times for the source and the target volumes to
improve the efficiency. This function was used to divide
slaves into two clusters and make partition of the volumes.
The slaves can work on the next task without waiting for the
other when warping the volume of new frame. We have
evaluated the performance of five strategies. The results
show that the strategy “Request” performs the best.

Performance could be further improved by considering
the interpolating time for the blocks without features. Al-
ternatively, the classification time becomes more dominant
when the number of slaves increases. Morphing a large
dataset of volume may result in the memory shortage; we
can solve this problem by using a cache strategy.

Acknowledgement

This research was supported in part by the National Sci-
ence Council of Taiwan, under contracts NSC-87-2213-E-
110-013 and NSC-88-2213-E-006-037.

References

[1] T. Beier and S. Neely, Feature-based image metamorphosis, in: Pro-
ceedings SIGGRAPH ’92, Vol. 26 (July 1992) pp. 35–42.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and
V. Sunderam, PVM: Parallel Virtual Machine – A Users’ Guide and
Tutorial for Networked Parallel Computing (MIT Press, Cambridge,
MA, 1994).

[3] T. He, S. Wang and A. Kaufman, Wavelet-based volume morphing,
in: Proceedings of Visualization ‘94, eds. D. Bergeron and A. Kauf-
man (IEEE Computer Society and ACM SIGGRAPH, Los Alamitos,
CA, October 1994) pp. 85–91.

[4] J.R. Kent, W.E. Carlson and R. Parent, Shape transformation for
polyhedral objects, in: Proceedings of SIGGRAPH ‘92, Computer
Graphics, Vol. 26 (July 1992) pp. 47–54.

[5] P. Lacroute, Fast volume rendering using a shear-warp factoriza-
tion of the viewing transformation, Ph.D. thesis, Stanford University
(1995).

[6] A. Lerios, C. Garfinkle and M. Levoy, Feature-based volume meta-
morphosis, in: Proceedings SIGGRAPH ’95 (1995) pp. 449–456.

[7] K.-L. Ma, J.S. Painter, C.D. Hansen and M.F. Krogh, A data distrib-
uted, parallel algorithm for ray-traced volume rendering, in: Pro-
ceedings of the 1993 Parallel Rendering Symposium, San Jose (Oc-
tober 1993) pp. 15–22.

[8] J. Nieh and M. Levoy, Volume rendering on scalable shared-memory
MIMD architectures, in: Proceedings of the 1992 Workshop on Vol-
ume Visualization, Boston (1992) pp. 17–24.

[9] T.W. Sederberg and E. Greenwood, A physically based approach to
2-D shape blending, in: Proceedings of SIGGRAPH ‘92, Computer
Graphics, Vol. 26 (July 1992) pp. 25–34.

[10] G. Wolberg, Digital Image Warping (IEEE Computer Society Press,
Los Alamitos, CA, 1990).

Leewen Lin is currently a teacher at Kaohsiung Senior Vocational Com-
merce School, Kaohsiung, Taiwan. Lin received a B.S. in computer edu-
cation from National Taiwan Normal University in 1991 and an M.S. in
computer science and information engineering from National Sun Yat-Sen
University in 1998. Her research interests include computer graphics and
parallel visualization.

Chungnan Lee received the B.S. and M.S. degrees in electrical engineer-
ing from National Cheng Kung University, Tainan, Taiwan, in 1980 and
1982, respectively, and the Ph.D. degree in electrical engineering from
the University of Washington, Seattle, WA, in 1992. He is an Associate
Professor in the Institute of Computer and Information Engineering at Na-
tional Sun Yat-Sen University, Kaohsiung, Taiwan, since 1992. Prior to
joining the faculty he was a system manager of Intelligent System Lab-
oratory, a teaching assistant, and a research associate, while persuing his
graduate studies at the University of Washington. His current research in-
terests include computer vision, character recognition, computer graphics,
Web and Java computing, Web-based knowledge discovery, computer-
supported collaborative work, and parallel computing.

Tong-Yee Lee received his B.S. in computer engineering from Tatung In-
stitute of Technology in Taipei, Taiwan, in 1988, his M.S. in computer
engineering from National Taiwan University in 1990, and his Ph.D. in
computer engineering from Washington State University, Pullman, in May
1995. Now, he is an Assistant Professor in the Department of Computer
Science and Information Engineering at National Cheng-Kung University
in Tainan, Taiwan, Republic of China. He was with WSU as a Visiting
Research Professor at School of EE/CS during 1996 summer. He has
been working on parallel rendering and computer graphics since 1992,
and has published more than 50 technical papers in refereed journals and
conferences. His current research interests include parallel rendering de-
sign, computer graphics, visualization, virtual reality, surgical simulation,
distributed & collaborative virtual environment, parallel processing and
heterogeneous computing.



Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


